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Computational Complexity and Efficiency in
Electro-Optical Computing Systems

John Reif, Duke University

0 Abstract of RESEARCH APPROACH and Objectives:

(1)To develop robust theoretical model for a wide class of electro-op-
tical computing systems

(2)To extend the known capabilities, by design of new, more efficient
algorithms for electro-optical computing using less time, volume and en-
ergy. In particular, to develop efficient algorithms that use optimal com-
binations of time, volume and energy on electro-optical computing systems

(3)To determine the fundamental theoretical limitations and capabili-
ties of electro-optical computing systems.

In particular, to determine lower bounds on tradeoffs between vol-
ume, time, and other resources (such as energy) of any elecro-optical com-
puting system to solve fundamental problems.
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1 Summary of Previous Technical Progress:

Work by Reif optical computing has been in four areas:

(A) Optical Methods for Message Routing
(A.1) Reif's Holographic Message Routing System

This is a very interesting outgrowth of Reif's work in optical comput-
ing. See Section A for details.

Message routing in a parallel machine concerns providing arbitrary
interconnections between its processors. The Connection Machine, for
example, is a 65,536 processor bit serial SIMD parallel machine, requiring
65,536 messages to be routed to distinct addresses. There is a bottleneck in
this information transfer mechanism: the routing time in these parallel
machines is approximately a thousand times longer than the instruction
time. Optical hardware provides the potential for high bandwith, low
crosstalk and power dissipation for connecting processors at the board-to-
board level. It has also been shown that impedance matching requirements
favor optics over electronics for fast data transfer.

Previous work on dynamic optical interconnects has employed spatial
light modulators (SLMs) in optical crossbars, or volume holograms to re-
configure connections in real-time. These two approaches hav(.
disadvantages: the former requires setting N2 switches to achieve the
interconnections, while the latter is limited by the slow response time of
photorefractive recording materials.

Dynamic holographic architectures for connecting processors in
parallel computers have been limited by the response time of the
holographic recording media.

In [Reif,90] and [Maniloff, Johnson, and Reif,89] we present we
present a novel optical interconnect architecture, involving spatial light
modulators (SLMs) and volume holograms, which uses spatial light
modulators to dynamically control the holographic routing of messages
between originator and destination processors. This system is not limited
by the response time of thc \ olume holographic recording media, which
stores the destination address: the routing is achieved as fast as the optical
beam can be modulated by the SLM.

Multiple-exposure holograms are stored in a volume recording media,
which associate the address of a destination processor on a spatial light



modulator with a distinct reference beam. A destination address
programmed on the spatial light modulator is then holographically steered
to the correct destination processor.

A small prototype of the Holographic Message Routing System was
constructed by Maniloff and Johnson at Boulder CO in a collaborative
project with Reif. We in [Maniloff, Johnson, and Reif,89] present the
design and experimental results of a holographic router for connecting
four originator processors to four destination processors. Our first
prototype holographic router used ferroelectric liquid crystal (FLC) SLMs
to connect four originator processors to four destination processors at 10
kHz.

In [Reif,90] We also present preliminary results on reducing the
number of switches in the SLM required to route N originator processors
to N destination processors in a single time step.

(A.2) Optical Expanders

An Optical Expander is a device that expands the dimension of a
pattern space. This is a new idea due to Reif that was motivated by needs of
the holographic message routing system but appears to be a very basic
problem. An optical expander allows the Holographic Message Routing
System to be scaled up to very large sizes using a small (logarithmic
number) of address bits. Reif has worked with his student Akitoshi
Yoshida and with Barakat on new methods for optical expanders For more
detail, see section A.3

(B). Efficient Optical Algorithms
(B.1) the VLSIO model

Our goal is to determine the fundamental theoretical limitations and
capabilities of optical computing systems. Our first step is to develop a
robust theoretical model for a wide class of electo-optical computing
systems. [Barakat and Reif,1987] developed a new model for Electro-
Optical devices, known as VLSIO. The VLSIO model includes both
electrical and also optical components; that is it allows combinations of 2D
VLSI chips as well as optical devices such as lenses and holograms. The
VLSIO model allows us to compare the time, volume and energy of a wide
variety of distinct electro-optical systems.



No other model had been previously invented. The VLSIO model
allows one to give a precise comparisons between proposed optical
algorithms, using well defined metrics such as time, volume and energy.

This is a new model of computation and we expect that the growth in
the optical technology during this decade would spur growth in algorithm
research.

See section B.1 for more details.

(B.2) Efficient Electro-Optical Algorithms in the VLSIO
model

Our goal here is to extend the known capabilities of electro-optical
devices, by design of new, more efficient algorithms for electro-optical
computing systems in the VLSIO model. This requires that we develop
algorithms that make optimal tradeoffs between key resources of time,
volume and energy. We used both known techniques from VLSI algorithms
as well as the special 3D properties of optical devices in the VLSIO model.

[Barakat and Reif, 87] developed efficient new VLSIO algorithms
using small volume and constant time for matrix multiplication and o ier
matrix problems. Recently [Reif and Tyagi,90] they developed efficient
optical algorithms for a much larges class of fundamental
problems(including most problems found in standard algorithm texts),
which occur frequently in practice.

Actual we consider the two models of computation-VLSIO and DFT-
Circuit. We describe both algorithms for a set of direct applications of
DFT, as well as algorithms that seem unrelated to the DFT; in particular
two sorting algorithms, an algorithm for the element distinctness, and also
both one dimensional and two-dimensional string matching algorithms. We
compare the performance of DFT-VLSIO algorithms with the known
VLSIO lower bounds. In many cases, these are near optimal and much
more efficient that other optical algorithms previously proposed and in
some cases our algorithms are optimal. See Tables 1 and 2 and Section B.2.

(C) Lower bounds for Optical Computation

Our goal here is to determine lower bounds on volume, time, and
other resources (such as energy) of any elecro-optical computing system in
the VLSIO model to solve fundamental problems. We strive to get



tradeoffs between resources. To do this, we extend techniques developed
for obtaining lower bounds for VLSI.

(C.1) Lower Bounds for the Volume of Electro-Optical
Devices in the VLSIO model

INITIAL THEORITICAL RESULTS: Previously, [Barakat and
Reif,87] showed the first known lower bounds for any optical device to
compute various functions of n inputs within time T and volume V in the
VLSIO model. This was the first time anyone had given general lower
bounds on the volume and time tradeoff of Electro-Optical devices. The
lower bounds hold for a large class of problems (known as transitive
problems) including sorting, routing, and most other standard
combinatorial or algorithmic problems.

(C.2) Lower Bounds for the energy consumption of
Electro-Optical devices in the VLSlO model.

[Tyagi and Reif, 1989] recently for the first time proved lower bounds
on energy consumption, volume and time for a large class of problems
using any possible Electro-Optical devices. This is the first time anyone
has given general lower bounds on the energy consumption of Electro-
Optical devices. In particular, they showed for time T and energy E, the
Product ET is greater than a certain function of the input size and
demonstrated matching upper bounds on the ET product for shifting.
Again, these lower bounds hold for a large class of problems (known as
transitive problems), including sorting, routing, and most other standard
combinatorial or algorithmic problems. See Appendix C

(D) The Ray Tracing Problem

In a recent paper, [Reif, Tygar, Yoshida,90] we have investigated a
problem that is fundamental for optical system design. In particular, we
consider optical systems c()fsisting of a set of refractive or reflective sur-
faces. The ray tracing problem is, given an optical system and the position
and direction of an initial light ray, to decide if a light ray reaches some
given final position. We assimc tie position and the tangent of the incident
angle of the initial light ra is rational. For many years, ray tracing has
been used for designing and ainalyzing optkial systems. Ray tracing is now
also extensively used in computer graphics to render scenes with complex
curved objects.



The computability and complexity of various ray tracing problems are
investigated. Our results are:

* Ray tracing in three dimensional optical systems which consist
of a fixed finite set of curved reflective or refractive surfaces
is undecidable, even if all the surfaces are represented by
systems of rational quadratic inequalities. However, the
problem is recursively enumerable.

* Ray tracing in three dimensional optical systems which consist
of a fixed finite set of flat reflective or refractive surfaces is
undecidable, if the coordinates of the endpoints of some of
surfaces are irrational. However, the ray tracing system is
PSPACE-hard, if we restrict ourselves to surfaces with
rational coordinates.

" For any d>=2, the ray tracing of d dimensional optical
systems which consist of a fixed finite set of flat reflective
surfaces is in PSPACE, if the positions of all the surfaces are
rational, and are placed perpendicular to each other.

For details, see section D.



2 Summary of new Research to be Done Summer, 1990
2.1 Optical Memory and Storage

One of the biggest challenges in the electro-optical field to to develop

methods for fast memory storage and retrieval, for large amount of data.

2.1.1 Holographic Memory Storage

The use of holography for memory storage is an old idea, but is
becoming increasingly practical and exciting due to the use of LiNi crystals
which can store from hundreds up to a thousand images, where each image
can resolve a page of up to a few megabytes of storage. A key problem in
the practical development of holographic memory storage is the use of
orthogonal images to address the holographic memory, which is solved by
the use of the optical expanders described in A.1 See appendix A.2 for a
further discussion of holographic matching and holographic memory
storage.

2.1.2 Optical Memory Storage and Computation Using Fiber
Optic Delay Loops

The use of delay loops for memory is an old idea, dating back to the
use of mercury storage tubes in the early digital computers of the 50's.
Nevertheless it is an becoming an important now for optical computation,
since it is one of very few known methods for doing storage completely in
the optical domain. The key problem is that data can only be accessed with
the delay for the propagation around the loop.

In very new research , Reif and Tyagi have developed efficient
algorithms for bit serial optical computers using fiber optic delay lines for
auxiliary storage. In particular, they have some very interesting new
techniques for using a very small set of optical delay loops to manage the
intermediate storage for a wide range of algorithms and computations on
interconnect networks. The key new idea is a method for utilizing data just
at the right time so that there is no delay for the propagation around the
appropriate loop. This extends the work of [Jordan, 1989] at Boulder, who
has implemented a delay loop memory system and discussed its use in
simulating networks.

[Reif and Tyagi,to appear 901

2.2 Multi-frequency Optics



The use of multiple frequencies to aid in computation and in optical

storage is very intriguing; Reif is just beginning to explore this idea.

2.2.1 Multi-frequency Storage

Using a single fiber optic delay loop of approx a kilometer on a single
frequency, up to tens of kilobytes can be stored. It is possible that with the
use of multiple frequency up to possibly a megabyte could be stored. Reif
will investigate these possibilities.

2.2.2 SMulti-frequency Computation

Reif will also investigate the use of multi-frequency in general
computation; this may decrease the volume required by electro-optical
devices. Also, Reif will also investigate the use of multi-frequency to allow
numerical computations to be done in optics with much higher accuracy.
There may be limitations to the use of multi-frequency; Reif will investi-
gate lower bounds as well.

2.3 Further Work in Summer 1990:

We are also investigating further work on discovery of new (volume
and time efficient) VLSIO algorithms for various fundamental
combinatorial and graph problems:

(1) searching problems
(2) graph connectivity
(3) minimal path problems
(4) linear programming



3 Recent Publications:

A Holographic Network for Parallel Processing Machines (with E.S.
Maniloff and K. Johnson). EPS/EUROPTICA/SPIE International Congress
on Optical Science and Engineering, Paris, France, April 1989.

Journal Publications

R. Barakat and J Reif, "Lower bounds on the computational efficiency
of optical computing systems", Journal of Applied Optics, Vol 26, p 1015-
1018, March 15, 1987.

R. Barakat and J. Reif, "A Discrete Convolution Algorithm for Matrix
Multiplication with Application in Optical Computers", Journal of Applied
Optics, Vol 26, p 2707-2711, 1987.

Conference Publications

(3) E.S. Maniloff, K.M. Johnson, and J. Reif "Holographic Routing
Network for Parallel Processing Machines"

EPS/Europtica/SPIE International Congress on Optical Science and
Engineering, Paris, France, April 1989.

(4) J. Reif, A. Yoshida, and D. Tygar. The Computability and
Complexity of Optical Beam Tracing, To be presented at The

Foundations of Computer Science conference, October, 1990.

(5) A. Tyagi and J. Reif, Energy Complexity of Optical Computations,
to appear in Indian Conference on Computer Science

Further Papers

(6) K. Johnson and J. Reif, "Very High Speed Holographic Message
Routing For Parallel Machines", (funded DARPA proposal) fall 1987.

(7) J. Reif, S. Sen and D. Tygar, "The Computational Complexity of
Optical Beam Tracing", Nov 1989.

(8) R. Barakat and J. Reif, "Optical Expanders", Aug 1989. Papers to
appear

(9) A. Tyagi and J. Reif, "Efficient Parallel Algorithms for Optical
Computing with the DFT Primitive", to Dec 1989.



(10) J. Reif and A. Yoshida. Optical Expanders with Holographic
Memory and Routing Applications, May, 1990.



4 Personnel
4.1 The Background of the PI:

Reif is a theoretical computer scientist and applied mathematician by
training, but is known for working in diverse areas, including robotics and
parallel computing, and has written over 80 papers in these areas. His re-
search style is to work on newly developing area, and to contribute basic
new models, new lower bound techniques and particularly new and novel
algorithmic techniques which can be used in the particular domain.

To solve problems in a new emerging area, Reif brings to bear to a
large number of diverse techniques he has learnt in exploring other related
areas (some time obviously related, sometime apparently unrelated). In
some cases, Reif's work leads to results that may be practical and that have
been implemented. Examples are

(1) the parallel nested dissection algorithm of [Pan and Reif]
implemented in [Leiserson et. al, 86] and [Opsahl and Reif, 86]

(2). the massively parallel BLITZEN machine described in [Davis and
Reif, 88] and [Blevins et. al, 90], and

(3) the parallel compression described in [Storer and Reif, 88]
(4) as well as the holographic routing system described herein.

Bibliography

Solving sparse systems of linear equations on the Connection Machine
(with C.E. Leiserson, J.P. Mesirov, L. Nekludova, S.M. Omohundro and
W. Taylor). Annual SIAM Conference, A51, Boston, MA, July 1986.

Solving sparse systems of linear equations on the Massive Parallel
Machine (with T. Opsahl). First Symposiur, on Frontiers of Scientific
Computing, NASA, Goddard Space Flight Center, Greenbelt, MD, 2241-
248, Sept. 1986.

Real-time compression i,co on a grid-connected parallel computer
(with J.A. Storer). 3rd I:. ,,'b)1im Conference on Supercomputing,
Boston, MA, May 1988.

Architecture and Opc :i of the BLITZEN Processing Element
(with E.W. Davis). 3rd /, .,monal Conference on Computing oil
Supercomputing, Boston, NIA. \hLv 1988.

BLITZEN: a highly i~iiuritcd, massively parallel machine (with
D.W. Blevins, E.W. Davis avId 1,..\. I lector). 2nd Synposiumn on Frontiers



of Massively Parallel Computation, Fairfax, VA, Oct. 1988. Also in

Journal of Parallel and Distributed Computing, Feb. 1990.

4.2 Other Faculty Supported

4.3 Graduate Student Support

Akitoshi Yoshida
Sandeep Sen (postdoc since December, 1989)



5 Recent Travel:

On March 15, 1989, visit to Boulder, Colorado to view 1st
demonstration of prototype holographic router being constructed in
collaboration between Reif and Johnson at University of Colorado at
Boulder. (This work began under AFSOR support, and was in 1989
augmented by a DARPA/ARO contract to Reif which has now expired.)

On Aug, 1989 visited Barakat at Harvard to work on paper on Optical
Expanders to improve holographic router. Begin computer simulations of
optical expander system.

On Sept, 1989 visit to Boulder, Colorado to discuss with Johnson
construction of a larger scale holographic router at University of Colorado
at Boulder.

On Sept, 1989 gave a talk optical computation and holographic routing
at Univ Saarbucken, West Germany on optical routing system. Possible
collaboration discussed.

On Feb, 1990 gave an invited talk on optical computation and
holographic routing at the Pen State.

On Feb, 1990 gave an invited talk on optical computation and
holographic routing to a large audience at the Parallel Computation
Workshop at Courant Inst, NYU.

On April, 1990 gave an invited talk on optical computation and
holographic routing at the University of North Carolina

On May, 1990 gave a invited talk on optical computation and parallel
algorithms at the Parallel Computation Workshop (run by Vishkin at Univ
Maryland) Workshop at Annapolis, Maryland.

On June, 1990 gave an invited talk on optical computation and
holographic routing at Brandeis Univ, MA.

On July,1990 will gave invited talks on optical computation and
holographic routing in Greece (at Crete) and at various location in Israel
(at Technion, at the University of Tel Aviv, and the University of
Jerusalem)



Section A
Holographic Based Computing

A.1 Holographic Message Routing

We describe an electro-optical message routing system for sending N
messages between N processors in constant time using 2N log N switches.
A spatial light modulator (SLM) is used to holographically steer messages
directly to their destination processor. The system is unique in that it uses
fixed holograms to achieve free space dynamic routing. A small prototype
implementation has been already constructed [Maniloff, Johnson and
Reif,89]. (An appendix describes practical issues.)

We introduce a new optical technique which we call the optical
expander. We discuss how an optical expander can be used to solve a key
problem, namely the orthogonality of message patterns. In particular, the
optical expander system is used to decrease the number of address bits
used by the router and to improve separation of distinct address patterns
matched by the holograms. We discuss the theory of the optical expander
system and give for the first time a rigorous proof of its correctness and
performance.

A.1.1 The Potential of Optical-Electronic Systems

The inherent high parallelism and connectivity of optical signal
processing lends itself directly to such applications as optical
interconnection. (See the recent text of [Feitelson,88]). The recent
development of moderately high speed, high dynamic range spatial light
modulators has lead to the prototype development of variety of optically
based signal processing systems.

A.1.2 Our Holographic Routing System

Dynamic message switching is the problem of sending N messages
between N processors, where the destination permutation is given
dynamically. In this section we describe a novel holographic message
routing system for dynamic message switching. We use a spatial light
modulator (SLM) to holographically steer messages directly in free space
to their destination processor. An important innovation of our holographic
routing system is the use of fixed holographs to do the dynamic message
switching. It uses 2N log N boolean switches, which is optimal within a
factor of 2. It has a constant time bound to do the routing and uses volume



O(N3/21og N). These time and volume bounds are within a log N factor of
asymptotically optimal with respect to the VLSIO model (this is a
theoretical model for optical-electronic computing developed in [Barakat
and Reif, 1987])

In brief, our holographic message routing system is a unique
architecture which uses N multiple-exposure holograms, each containing N
images to connect N processors to N processors, via free space routing.
The system uses N spatial light modulators (SLMs), each with 2log N
pixels. A column of light illuminates each processor's SLM which is
programmed with an encoded address for a destination processor. This
optically encoded address is routed directly to the correct processor by a
hologram containing N images, each correlated with a particular
destination processor. This optical interconnection network is a direct
message router taking constant time as compared to conventional fixed
interconnection networks which require time delay at least log N. Our
holographic message system can be applied to do very high speed message
routing for massively parallel machines such as the CONNECTION
machine.

A.1.3 An Implementation of the Holographic Routing
System

There was a collaborative Optical Routing Project between theoretical
computer scientist, John Reif, at the Computer Science Department, Duke
University and optical engineers Kristina Johnson and Eric Maniloff at the
Center for Optoelectronic Computing Systems at University of Colorado,
Boulder. While Reif initially conceived of the theory of the system, the
practical implementation was due to Johnson and Maniloff, who built a 4
by 4 prototype holographic routing system (for implementation details see
[Maniloff, Johnson and Reif,891) at the Center for Optoelectronic
Computing Systems at University of Colorado, Boulder. This running
prototype implementation was completed in April, 1989. Because of the
small size of this prototype systeim, an optical expander system was not
required. They have also developed in [Strasser, Maniloff, Johnson,
Goggin,891 a, procedure for recmrding multiple-exposure holograms with
equal diffraction efficiency in 1hotorefractive media. Reif has also
directed computer simulations ;, the message routing applications.(the
availability of a device which caii control light with a high spatial resolu-
tion and with a short cycle time is critical to the successful realization of a
second generation our system: for this we acknowledge the technical
assistance from Derek Lile, Colorado State University, on the development
of Ill-V MQW/CCD SLMs.)



A.1.4 Comparison with other Routing Systems

Interconnection networks in parallel processing computers are very
important subjects. There are many interconnection networks for different
applications, since different algorithm requires different degree of
globality of the interconnects. Because of the availability of non-linear
devices as gates which is extensively used in the interconnection network,
electrically implemented interconnections are widely seen among many
computer organizations.\citethwang:841 However, the future of electric
interconnections is not necessarily bright. The problem comes from its
restricted dimension-the wiring is confined on a two dimensional plane-
and from RC delay on interconnections.

These drawbacks which are found in electrical interconnections do not
exist in optical interconnections. Light beams need not be confined in a
wave guide such as an optical fiber, but can travel freely through space. In
addition, light beams can have a great bandwidth, and the propagation of
light traveling through space or in a fiber is not affected by resistance,
capacitance, or inductance. Thus, optical interconnections offer a high data
transfer rate in a simple architecture by a set of light beams freely
traveling through space. The various papers discuss the potential of optical
interconnections.

Among various interconnection networks, the highest level of
interconnection network is a crossbar network which uses N2 interconnects
available for N source units and N destination units. If such a network is
implemented electrically for large N, it will become very expensive in
terms of both time-setting individual N2 switches takes time-and
complexity. The property of light beams which we briefly mentioned
above may give great potential for an inexpensive and high-speed optical
crossbar network.



A.2 Holographic Memory Storage

Holographic Matching

In this section, we describe the general idea of holograms and that of
holographic associative matching.

Principle of Holograms

A photograph records the intensity distribution of the light wave
scattered by an object. A hologram, however, records the intensity and
phase distribution of the light scattered by an object. Since a hologram has
the information about the intensity and the phase of the scattered light
wave, we can reconstruct the image of the object from the hologram.

In order to record the phase information of the scattered light, we
superimpose a reference wave to the light wave scattered by an object.
Then, the resulted interference pattern can be recorded on a photographic
plate.

Wave Front Recording and Associative Matching

We describe the basic idea of wave front recording and holographic
associative matching. A typical arrangement used to produce a hologram is
shown in figure 1. Two coherent beams are used in the recording. Both
the object beam, which we wish to record, and a reference beam illuminate
the photographic medium. The photographic medium records the
interference fringes which are produced as the interaction between the
object beam and the reference beam. After the recording, when the
recorded fringes are illuminated by a reconstruction beam-typically a
reproduction of the reference beam, the fringes diffract the reconstruction
beam into three main beams; the zero order term which corresponds to the
reconstruction beam, a first order diverging virtual image which
corresponds to the reconstructed object beam, and the other first order
converging real image which corresponds to the conjugate of the object
beam. The arrangement of the recording must be carefully done so that
these beams do not overlap each other. When the wave length or the
position of a reconstruction beam differs from those of the reference beam,
the reconstructed images will be athered.

The geometry of hologram formation affects the diffraction properties
of the hologram. The thickness of plane holograms is small compared to
the spacing of the interference fringes recorded on the media. This type of



the holograms can be considered as a plane diffraction grating. On the
other hand, volume holograms are thick, and the interference fringes are
recorded in three dimensions. Thus, the volume holograms can be consid-
ered as volume diffraction gratings where the diffracted beams obey
Bragg's law. The reconstruction of the volume hologram is very sensitive
to the direction of the reconstruction beam. If this direction is not identical
to the direction obtained from Bragg's law, there will be no images
reconstructed. This property offers a possibility in making multiple-
exposure distinct holograms in a single piece of volume photographic
medium. The distinct holograms may be recorded by using distinct
reference beams. Later, each hologram can be reconstructed by using the
corresponding reference beam as a reconstruction beam. Thus, illuminating
a multiple-exposure volume hologram by a reconstruction beam can be
viewed as addressing a stored image associated with the reconstruction
beam.

Media for Volume Holograms

As a media for volume holograms, thick photographic emulsion can be
used. However, other mediums such as various types of photorefractive
nonlinear optical crystals are favored for their flexibility. The most widely
used such media is Fe-doped lithium niobate (LiNbO 3). When this type of
crystals is illuminated, the concentration of photocarriers in the crystal will
be changed. These photocarriers will be trapped, and will produce the
change in the refractive index of the crystal.

Unlike a plane hologram, holograms made from these photorefractive
crystals produce significantly high diffraction efficiency. Theoretically.
the diffraction efficiency of such a volume hologram-a phase modulated
volume hologram-can be 100%. On the other hand, a phase modulated
thin hologram produces about 33%. Amplitude modulated holograms such
as one made from a development of a photographic emulsion without
bleaching, or of a thick photographic emulsion, produce lower diffraction
efficiencies than those phase modulated counterparts.

Many researchers have investigated multiple-exposure holograms on
volume media. They showed hundreds of distinct holograms may be
recorded, if the medium is thick enough, and the different reference beams
has an angler displacement of a few minutes. Staebler et al. showed that at
least 512 multiple holographic exposures can be recorded in volume media,
as long as the distinct reference beams enter at angular displacements of at
least r1lO00. Therefore, we can use a multiple-exposure volume hologram
to store N = 512 images as long as we use N beams, each of which has a



distinct incident angle from every other beam. These N beams can be

constructed by use of our optical expanders.

Holographic Memory Storage

Holograms can be used to implement memory storage systems. The
basic idea of holographic memory storage is that the data is arranged in
blocks, which are stored on holograms. A block of memory can be read
by using its corresponding reference beam. This type of memory is
particularly suited for read-only applications, since the holograms can be
fixed. However, dynamically modifiable holograms such as
photorefractive materials may give potential for active holographic
memory storage systems.

The holographic memory storage system uses d light beams to retrieve
N blocks of data, where d > 2 log N. Without our optical expanders, a
naive approach requires a set of N orthogonal patterns-this requires N
distinct light beams-to retrieve N blocks of data. Our optical expanders
create such a set of N light beams from input of d light beams.



A.3 Optical Expanders

An optical expander is a non-linear electro-optical system which
creates N distinct orthogonal boolean patterns, each of size N bits from N
distinct input patterns, each of size d bits, where d is no greater than 2 log
N. In other words, an optical expander takes as an input a pattern encoded
in d bits, and transform it to an expanded pattern as its output which is
encoded in N bits. Each output pattern is required to be orthogonal to
every other pattern.

More precisely, an optical expander takes as input one of N distinct
boolean vectors PIP2, ... , PN of length d, where d = c log N. (Note: c can
be about as small as 1.5. However, setting c = 2 makes the coding scheme
simple, and thus may be preferable in practice.) We call these vectors the
{Nem input patterns}. Each input pattern is optically encoded by using d
pixels, each pixel being either ON (denoted by 1) or OFF (denoted by 0).
We will require that each input pattern has exactly d/2 pixels ON. The
optical expander produces a spatial output pattern r i from given input
pattern pi. Each output pattern ri is one of N distinct orthogonal boolean
vectors of length N. Furthermore, we assume each output pattern is
represented by a coherent light beam-a coherent light beam can address a
hologram.

A linear optical system can not be used as an optical expander, since
any linear mapping from input of size d creates no more than d linear
independent output patterns. Thus, it is impossible to create a set of N
distinct orthogonal patterns by any linear optical system.

There are various ways to introduce non-linearity in an optical system.
One possibility is to use different coding schemes. In other words, we can
apply some linear filtering operations in the spatial frequency domain.
After the filtering operations, the coding can be transformed back to the
original spatial domain. In coherent optics, spatial fourier transform can be
easily implemented by a lens. Another possibility is to use a threshold
device. When the intensity of light illuminating a surface is thresholded at
a certain level, the thresholdcd output becomes a non-linear function of the
intensity. In this approach. depending on a type of thresholding devices,
either coherent or incoherent optics can be used. Our optical expanders
use threshold devices to introduce non-linearity.

In the following section (2), we describe applications of our optical
expanders. In order to understand the basic idea, we first describe



holographic matching in section (2.1), and then in section (2.2) holographic
interconnects are discussed. In section (3), we describe our optical
expander in detail. Our optical expander consists of two parts; a linear part
and a non-linear part. The linear part is a matrix-vector multiplier, and the
non-linear part is an array of thresholding devices. In section (3.1), optical
matrix-vector multipliers are discussed. In section(3.2), thresholding
operations are discussed.

We describe and investigate an optical system which is called the
optical expander. An optical expander creates a large number N of distinct
orthogonal boolean patterns by use of an electro-optical device with at most
d boolean inputs, where d >= 2 log N. We show that an optical expander
can not be constructed by using linear optical systems, and so a non-linear
optical filter must be used. In our optical expanders, non-linearity is
introduced by threshold operations.

Applications of of our optical expanders include a holographic
memory storage system and a holographic message routing system. A
holographic memory storage system stores N images, each image indexed
by a pattern. These patterns must be orthogonal in order to minimize
crosstalk among other images. Our optical expanders produce these N
orthogonal patterns with input of d pixels. Thus, with our optical ex-
panders, addressing stored images can be carried out by directly using
binary encoded addresses which are sent from the electric interfaces.

Our optical expanders can be used to implement an optical
interconnection network, which is capable of dynamically connecting N
source units to N destination units in a single step. Without our optical
expanders, such an optical network typically requires setting of N 2

individual switches-each source unit must electrically set N switches to
connect itself to its destination. In a VLSI system where the wiring is
confined on a two dimensi ial plane, configuring physical wires to set
these switches may producc ai practical problem for large N. Our optical
expanders solve this problcin ', not actually setting individual N2 switches,
but optically creating a ,-t 4, spatially modulated patterns which
corresponds to setting of V .,. irlics. Then, the set of patterns can be used
to optically establish coniic.:: :,, Crom N source units to N destination units
via holograms.

Thus, our optical expntn~crs arc essential in implementing practical
optical interconnection net%%,o k,.

Description of Optical Expanders



An Optical expander is a non-linear electro-optical system which
creates N distinct orthogonal boolean patterns, each of size N bits from N
distinct input patterns, each of size d bits, where d is no greater than 2 log
N. In other words, an optical expander takes as an input a pattern encoded
in d bits, and transform it to an expanded pattern as its output which is
encoded in N bits. Each output pattern is required to be orthogonal to
every other pattern.

More precisely, an optical expander takes as input one of N distinct
boolean vectors P1,P2, ... ,PN of length d, where d = c log N. (Note: c can
be about as small as 1.5. However, setting c = 2 makes the coding scheme
simple, and thus may be preferable in practice.) We call these vectors the
input patterns. Each input pattern is optically encoded by using d pixels,
each pixel being either ON (denoted by 1) or OFF (denoted by 0). We will
require that each input pattern has exactly d/2 pixels ON. The optical
expander produces a spatial output pattern ri from given input pattern pi.
Each output pattern ri is one of N distinct orthogonal boolean vectors of
length N. Furthermore, we assume each output pattern is represented by a
coherent light beam-a coherent light beam can address a hologram.

Optical Expanders require Non-linear optical systems

A linear optical system can not be used as an optical expander, since
any linear mapping from input of size d creates no more than d linear
independent output patterns. Thus, it is impossible to create a set of N
distinct orthogonal patterns by any linear optical system.

Non Linear Optical Filters

There are various ways to introduce non-linearity in an optical system.
One possibility is to use different coding schemes. In other words, we can
apply some linear filtering operations in the spatial frequency domain.
After the filtering operations, the coding can be transformed back to the
original spatial domain. In coherent optics, spatial fourier transform can
be easily implemented by a lens. Another possibility is to use a threshold
device. When the intensity of light illuminating a surface is thresholded at
a certain level, the thresholded output becomes a non-linear function of the
intensity. In this approach, depending on a type of thresholding devices,
either coherent or incoherent optics can be used. Our optical expanders use
threshold devices to introduce non-linearity.



Our optical expander consists of two parts; a linear part and a non-
linear part. The linear part is a matrix-vector multiplier, and the non-
linear part is an array of thresholding devices. See [Reif and Yoshida, 901
for details.



Section B
VLSIO Algorithms

B.1 The VLSIO MODEL

DFT-VLSIO and DFT-Circuit Models

VLSI Model:

It has been observed many times that the conventional electronic
devices are inherently constrained by 2-dimensional limitations. Indeed,
this was the original motivation for the VLSI model of Thompson
[Thompson 80] which has been successfully applied to model such circuits.
The widely accepted VLSI model allowed us both to compare the
properties of algorithms such as area and time, and also to determine the
ultimate limitations of such devices.

Let us first summarize the 2-D VLSI model, which is essentially the
same as the one described by Thompson [Thompson 79]. A computation is
abstracted as a communication graph. A communication graph is very
much like a flow graph with the primitives being some basic operators that
are realizable as electrical devices. Two communicating nodes are adjacent
in this graph. A layout can be viewed as a convex embedding of the
communication graph in a Cartesian grid. Each grid point can either have
a processor or a wire passing through. A wire cannot go through a grid
point with a processor unless it is a terminal of the processor at that grid
point. The number of layers is limited to some constant y. Thus both the
fanin and fanout are bounded by 4 y. Wires have unit width and bandwidth
and processors have unit area. The initial data values are localized to some
constant area, to preclude an encoding of the results. The input words are
read at the designated nodes called input ports. The input and subsequent
computation are synchronous and each input bit is available only once. The
input and output conventions are where-determinate but need not be when-
determinate.

VLSIO Model:

The recent development of high speed electro-optical computing
devices allows us to overcome the 2-D limitations of traditional VLSI. In
particular, the optical computing devices allow computation to be done in 3
dimensions, with full resolution in all the dimensions.



A rather different model for 3-D electro-optical computation is
described in [Barakat, Reif, 87], which combines use of optics and
electronics components in ways that models currently feasible devices.
This model is known as the VLSIO model, with the 0 standing for optics.
In this model, the fundamental building block is the optical box, consisting
of a rectilinear parallelpiped whose surface consists of electronic devices
modeled by the 2-D VLSI model and whose interior consists of optical
devices. Communication from the surface is assumed to be done via
electrical-optical transducers on the surface. Given specified inputs on the
surface of the optical box, it is assumed that the output to the surface is
produced in 1 time unit. Note that we do not rule out the possibility of two
wide optical beams crossing, while still transmitting distinct information.
However, there is an assumption (justified by a theorem of Gabor [Gabor,
61]) that a beam of cross section A can transmit at most O(A) bits per unit
time. This is the only assumption made about the power of the optical
boxes.

For the purposes of upper bounds, we would have to be more specific
about the computational power of optical boxes. The use of electro-optical
devices will certainly allow us to overcome the " '" limitations. The
VLSIO potentially has more advantages over 2-D V LSI than just 3-
dimensional interconnections of 3-D VLSI. In particular, it is well known
that a 2 dimensional Fourier transform or its inverse can be computed by
an optical device in unit time. In our d~ic,etre molo,, we assume that an
optical box of size n"12 x n1"2 x 11112 with an input image of size n112 x n12

can compute a 2-D Discrete Fourier Transform (DFT) in unit time. We
call this the DFT-VLSIO model.

This is consistent with the capabilities of the electro-optical
components constructed in practice. In this case, the VLSIO model is
clearly more powerful than the 3-D VLSI model, e.g. since in that model
we cannot do a DFT in constant time. A VLSIO device consists of a
convex volume with a packing of optical boxes whose interiors do not
intersect, but may be connected by wires between their surfaces. This
allows for communication between two optical boxes. Note that the VLSIO
model encompasses the 3-D ISI model as a subcase: the particular
sube'ase where each optical box i.\ ju.st a 2-D surface with no volume.

A VLSIO circuit is an embedding of a communication graph with the
nodes corresponding to optical boxes in a three dimensional grid. The
volume of a VLSIO circuit is the volume of the smallest convex box
enclosing it. Due to Gabor's theorem [Gabor, 61] establishing a finite



bound on the bandwidth of an optical beam, without any loss of generality,

we assume that only binary values are used in transmitting information.

The DFT-Circuit Model:

Let R be an ordered ring. A circuit over R consists of an acyclic
graph with a distinguished set of input nodes, and a labeling of all the non-
input nodes with a ring operation. In the DFT circuit model, we allow:

1. scalar operations such as x, /, + and comparison with 2
inputs, and

2. DFT gates with n inputs and n outputs.

The size of the DFT circuit is the sum of the number of edges and the
number of nodes. Recall from Parberry, Schnitger [Parberry, Schnitger,
88] that a threshold circuit is a Boolean circuit of unbounded fanin, where
each gate computes the threshold operation. Threshold circuits are shown
in Reif and Tate [Reif, Tate, 871 to compute a large number of algebraic
problems such as polynomial division, triangular Toeplitz inverse, integer
division, sin, cosine etc. in noow size and simultaneous 0(1) depth.

Since the first output of a DFT gate is the sum of the inputs, and since
comparison operations are allowed, a DFT circuit clearly has at least the
power of a threshold circuit of the same size and depth. The question we
address in this section is the power of the DFT operation above and beyond
its power to compute threshold. Note that no non-trivial lower bounds on
a threshold circuit computing a DFT are known. But, just by its definition,
at least n threshold gates arc required for a DF computation.



B2 Efficient Optical Algorithms Using The DFT

Primitive

B2.0

The optical computing technology offers new challenges to the
algorithm designers since it can perform an n-point DFT computation in
only unit time. Note that DFT is a non-trivial computation in the PRAM
model. We develop two new models, DFT-VLSIO and DFT-Circuit, to
capture this characteristic of optical computing. We also provide two
paradigms for developing parallel algorithms in these models. Efficient
parallel algorithms for many problems including polynomial and matrix
computations, sorting and string matching are presented. The sorting and
string matching algorithms are particularly noteworthy. Almost all of
these algorithms are within a polylog factor of the optical computing
(VLSIO) lower bounds derived in [Barakat, Reif 87] and [Tygar, Reif 89].

B2.1

Over the last 15 years, VLSI has moved from being a theoretical
abstraction to being a practical reality. As VLSI design tools and VLSI
fabrication facilities such as MOSIS became widely available, the algorithm
design paradigms such as systolic algorithms, that were thought to be of
theoretical interest only, have been used in high performance VLSI
hardware. Along the same lines, the theoretical limitations of VLSI
predicted by area-time tradeoff lower bounds have been found to be
important limitations in practice. The field of electro-optical computing is
at its infancy, comparable to the state of VLSI technology, say, 10 years
ago. Fabrication facilities are not widely available-instead, the crucial
electro-optical devices must be specially made in the laboratories.
However, a number of prototype electro-optical computing systems-
perhaps most notably at Bell Laboratories under Wong, as well as optical
message routing devices at Boulder, Stanford and USC, have been built
recently. The technology for electro-optical computing is likely to advance
rapidly in the 90s, just as VLSI technology advanced in the late 70s and
80s. Therefore, following our past experience with VLSI, it seems likely
that the theoretical underpinnings for optical computing technology-
namely the discovery of efficient algorithms and of resource lower bounds,
are crucial to guide its development.

What are the specific capabilities of optical computing that offer room
for new paradigms in algorithm design? It is well known that optical



devices exist that can compute a two-dimensional Fourier transform or its
inverse in unit time, see Goodman [Goodman, 82]. This is a natural
characteristic of light. This opens up exciting opportunities for the
algorithm designers. In the widely accepted model of parallel
computation-PRAM, not many interesting problems can be solved in 0(1)
time. In particular, the best known parallel algorithm for Discrete Fourier
Transform-FFT, takes time O(log n) for an n-point DFT. Given this
powerful technology, the question we address is, "which problems can use
the DFT computation primitive gainfully?" It is not immediately clear that
given a problem, apparently disparate from DFT, such as sorting, how one
reduces it to several instances of DFT to derive an efficient algorithm. We
identify two general techniques that benefit a host of problems. First, we
show a way to compute 1-dimensional n-point DFT efficiently using a
series of 2-dimensional DFTs. Note that the optical devices compute a 2-
dimensional DFT. However, the 1-dimensional DFT seems to be the one
which is more naturally usable in most of the problems. Secondly, we
demonstrate an efficient way to perform a parallel-prefix computation with
DFT primitives. Equipped with these two techniques, we propose constant
time solutions for a variety of problems including sorting, several matrix
computations and string matching.

We consider discrete models for optical computing with a DFT primi-
tive. In particular, an n-point DFT operation or its inverse can be
computed in unit time using n processors. The development of a new
model of computation is a task full of trade-offs. Only the essential
characteristics of the underlying computing medium should be reflected in
the model. Any unnecessary characteristics only serve to undermine the
usefulness of such a model. PRAM (parallel random access machine) has
provided a much needed model for the development of parallel algorithms
for some time now. The algorithm designers do not have to worry about
underlying networks and the details of timing inherent in the VLSI
technology used to implement the processors. In a similar vein, our
objective is to develop a model that captures the essence of optical
computing medium with respect to algorithm design. We believe that the
most important characteristic that distinguishes the optical technology from
the VLSI technology is the ability to compute a powerful primitive, DFT,
in unit time. Not surprisingly then, this is the focus of our models. Our
new models are:

[DFT-Circuit Model:] where we allow an n-point DFT
primitive gate along with the usual scalar operations of
bounded fanin.



[DFT-VLSIO:] which extends the standard VLSI model to 3-
dimensional optical computing devices that compute the 2-D
DFT as a primitive operation. We refer to an electro-optical
computation as VLSIO, where 0 stands for optics.

Note that although we did not mention a PRAM-DFT model where a
set of n processors can perform a DFT in unit time; all the algorithms in
DFT-Circuit model work for such a PRAM-DFT model.

A PRAM-DFT can simulate a DFT-Circuit of size s(n) and time t(n)
with s(n) processors in time O(t(n)). Hence, a PRAM-DFT model is an
equally acceptable choice for the development of parallel algorithms in
optical computing.

Our main results are efficient parallel algorithms for solving a
number of fundamental problems in these models.

The problems solved include:

1. prefix sum

2. shifting

3. polynomial multiplication and division

4. matrix multiplication, inversion and transitive closure.

5. Toeplitz matrix multiplication, polynomial GCD,
interpolation and inversion.

6. sorting

7. 1 and 2 dimensional string matching

The sorting and string matching algorithms were not at all obvious.
Although, we don't have any lower bounds in the DFT-circuit model, many
of these parallel algorithms are optimal with respect to the VLSIO model.
The known lower bound results in VLSIO are as follows. Barakat and Reif
Barakat, Reif 87] showed a lower bound of f2(If3 /2) on V T312 of a VLSIO
computation for a function f with information complexity If. V denotes the
volume of the VLSIO system computingf. We [Tyagi, Reif 891 proved a
lower bound of f 2 (Ijf(!/2) ) on the energy-time product for a VLSIO
model with the energy function f(x). We compare our results with the



best-known PRAM algorithms for the corresponding problems. All the
bounds are in Big-Oh notation (0).



C. Lower Bounds for the energy consumption of
Electro-Optical devices in the VLSIO model.

Over the last 15 years, VLSI has moved from being a theoretical
abstraction to being a practical reality. As VLSI design tools and VLSI
fabrication facilities such as MOSIS became widely available, the algorithm
design paradigms such as systolic algorithms, that were thought to be of
theoretical interest only, have been used in high performance VLSI
hardware. Along the same lines, the theoretical limitations of VLSI
predicted by area-time tradeoff lower bounds have been found to be
important limitations in practice. The field of electro-optical computing is
at its infancy, comparable to the state of VLSI technology say 10 years ago.
Fabrication facilities are not widely available-instead, the crucial electro-
optical devices must be specially made in the laboratories. However. a
number of prototype electro-optical computing systems-perhaps most
notably at Bell Laboratories under Wong, as well as optical message
routing devices at Boulder, Stanford and USC, have been built recently.
The technology for electro-optical computing is likely to advance rapidly
in the 90s, just as VLSI technology advanced in the late 70s and 80s.
Therefore, following our past experience with VLSI, it seems likely that
the theoretical underpinnings for optical technology-namely the discovery
of efficient algorithms and of resource lower bounds, are crucial to guide
its dcvelopment.

Barakat and Reif [Barakat, Reif 871 developed a model for electro-
optical computing systems. They refer to an electro-optical computation as
VLSIO, where 0 stands for optics. Since we anticipate the number of
VLSI components in optical computers to be large, the VLSI prefix in
VLSIO can be reasonably used. The following two significant aspects
distinguish VLSI from VLSIO. VLSIO has a 3 dimensional character.
Secondly, the information in VLSIO is carried by optical beams rather than
electrical currents.

Just as area, energy ,tmhl time are three fundamental resources in a
VLSI computation, volume. ,'e,'rgy and time are the resources of interest
in a 3-D VLSI circuit or an ,,icical computing system. The volume, time
lower bounds for optical cnii 1u tations have been established by Barakat
and Reif [Barakat, Reif 871 ilo,_,z the lines of AT 2 VLSI bounds. But, a
similar asymptotic analysis ()I energy bounds in VLSIO computations is
missing. A study of energy reluirements in 3-D VLSI has also not been
undertaken. Energy has received increased attention recently because the
power consumption largely detenines the total cost of a high performance



computer due to heat dissipation. The theoretical physicists have also
considered the viability of characterizing the computational costs entirely
in terms of energy. All of the recent research activity in energy
complexity has been directed at the study of the energy requirements in 2-
D VLSI computations. More specifically, the first formal result in
switching energy was due to Lengauer, Mehlhom [Lengauer, Melhom 81],
which shows that the switching energy of transitive functions, E, is
f2(n2/P log(AP2/n2)), which is 2(n2) for AP2 = O(n2). P is the period of a
pipelined computation. Kissin [Kissin 82, 85] proposed a formal model for
switching energy distinguishing between uniswitch and multiswitch models.
When a wire is assumed to switch at most once during the course of com-
putation, it is a uniswitch circuit. Most of the pipelined computations fall
in this class. The more general model, that allows each wire to switch any
number of times, is called the multiswitch model. Snyder, Tyagi [Snyder,
Tyagi 86] and Leo [Leo 84] considered variations on Lengauer, Mehlhom
result. The first tight bound on uniswitch and multiswitch energy-period
product [2(n2)] for shifting was obtained by Aggarwal et. al. [Aggarwal et.
at, 88]. Tyagi [Tyagi 89] derived a tight bound on multiswitch energy,

2(n'.5), and average case uniswitch and multiswitch energy. The 3-D VLSI
model has been studied by Rosenberg [Rosenberg 81], Preparata
[Preparata 83], and Leighton, Rosenberg [Leighton,Rosenberg 86] with
respect to volume-time trade-offs. We analyze the energy requirements in
3-D VLSI and VLSIO systems.

The energy consumption model developed in Kissin [Kissing 82]
applies to the 3-dimensional VLSI as well. But, as a first step, a consistent
model of energy consumption in optical computing is needed. In this
section, we propose two models for the energy consumption in an optical
computer which are consistent with the VLSIO model described in
[Barakat, Reif 87]. Within these models, we demonstrate tight bounds on
both energy and energy-time product for the optical computation of several
functions.

A key property which we will consider in this work is the energy
consumed by an electro-optical device. This is determined by summing the
energy consumed by each wire and by each optical beam. This energy
consumption is assumed to be due to switching. In all the energy models
considered to date-a wire of length d consumes switching energy e(d),
which is consistent with the currently used CMOS technology. However, in
an optical computation, an energy cost non-linear (even exponential) in the
length of the switching wire is justifiable for some frequency range. This
leads to a generalization of the energy model. In particular, we assume an
energy function, f(d), such that f(d) energy is consumed by a wire/beam of



length d switching between 0 and 1. Here f(d) is a function that may or
may not be nonlinear, but f and its first derivative must be continuous
functions. We argue that f(d) can, in theory, be an exponential function in
d for optical beams. We also show why, in practice, f(d) may be a
polynomial or even a linear function. Our energy lower bounds encompass
any such energy function f(d). Note that the case of a nonlinear energy
function has not been considered previously even for 2-D VLSI. The local
cutting techniques used for the linear energy model consider the energy
consumption of the unit-length wire segments incident on the cut.
However, in such a local context, any non-linear energy function, at best,
measures the same energy consumption at the cut as does the linear energy
function. The unit length segments consume the same order of energy for
all the energy functions. Hence a somewhat more global lower bound
approach is needed in the generalized energy model.

Results: We derive the lower bounds, shown in the table below, on
uniswitch and multiswitch energy E and energy-time product ET of a
transitive function. The matching upper bounds are established for a
transitive function: shifting.

Note that the objective of multiswitch circuits is to find a tight
embedding for the devices under the premise that it leads to shorter links.
The overall energy saving is derived from the observation that the repeated
use of short links leads to a smaller ET product. On the other hand, a
uniswitch circuit will have to make links long in order to propagate infor-
mation far enough. But it will use every link only once. Hence, as shown
in [Tyagi 89], in 2-D VLSI a multiswitch circuit always has a lower energy
consumption than a uniswitch circuit. Interestingly, as we show, the only
3-D VLSI examples satisfying the multiswitch lower bound for f(x) < x413

are uniswitch circuits. We believe that no 3-D circuits exist satisfying the
lower bound in this energy function range. This says that for the 3-D case,
there is a zone : x < f(x) < x4 /3, where long links leading to higher
volume perform better than a circuit with short links, defying the
conventional wisdom.



D Complexity of Optical Ray Tracing

We examine ray tracing problems in [Reif, Akitoshi, and Tygar, 90].
The history of ray tracing goes back at least to Archimedes, who examined
images formed by a mirror to understand the law of reflections. In the
15th to 18th centuries, many scientists and astronomers in Europe worked
on geometrical optics and invented optical instruments such as telescopes.
In 1730, Newton published his book "Opticks" in which he formally
defined the reflective and refractive laws of optics, and first defined and
investigated some ray tracing problems. These classical ray tracing
problems are very important to the design of most optical systems which
consists of a set of refractive or reflective surfaces, and involve tracing the
path of rays to investigate the performance of the systems. Ray tracing
also has important application in computer graphics, where ray tracing is
used to render pictures which consist of objects with surfaces that reflect or
refract light rays.

The ray tracing problem is a decision problem: given an optical
system (namely, a finite set of reflective or refractive surfaces) and an
initial position and direction of a light ray and some fixed point p, does the
light ray eventually reach the point p.

Our optical systems consist of a finite set of optical objects that may be
totally reflective (we call these mirrors), partially reflective (we call these
half-silvered mirrors), or totally absorbent (we call these lenses). We
restrict ourselves to optical systems constructed out of flat (e.g., line
segments) mirrors and half-silvered mirrors; and out of lenses whose
boundaries are quadratic curves. (We call these lenses quadratic lenses.)
Do mirrors reflect if a light-beam is directed exactly at an endpoint? It
will turn out that this matters for the case when we form a comer out of
two mirrors. What should happen when the light beam is directed exactly
at the comer? We shall allow mirrors (and half-silvered mirrors) to
reflect entirely along the surface of either a closed, half-closed, or open
line segment.

The positions of our mirrors, half-silvered mirrors, and lenses can be
either rational or irrational. If the optical system consists only of mirrors
or half-silvered mirrors with endpoints with rational coordinates, we say
that the optical system is rational. If the optical system contains mirror or
half-silvered mirrors with endpoints that have irrational coordinates then
we say the optical system is irrational.



We are interested in if the light will reach a final certain position, and
not in the intensity of the light at that position. Throughout this section, we
assume that the path taken by light rays are determined by the classical laws
of optics: the law of reflection and the law of refraction.

(The law of reflection states that the incident angle and the reflected
angle are equal, and the law of refraction states that the angle of refraction
depends on the incident angle and the index of refraction of the materials.)
We always assume that the initial position of the light ray has rational
coordinates and the tangent of the initial incident angle is rational, and the
test point p has rational coordinates. (In general, in our lower bound
proofs, it suffices to let the light rays initially enter perpendicular to a
window of the optical systems.) Our surprising discovery is that if the
optical system is rational it may have high complexity, or even be
undecidable. We generally denote n to be the number of bits in binary en-
coding of the optical system.

Our results of the comp'liational complexity for ray tracing in various

optical systems may be sur, anarized as follows:

1. Ray tracing in three dimensional optical systems which consist
of a finite set of mirrors, half-silvered mirrors, and quadratic
lenses is undecidable, even if the endpoints of the objects in
the optical system all have rational coordinates. However, the
problem is recursively enumerable.

2. Ray tracing in three dimensional optical systems which consist
of a finite set of mirrors is undecidable, if the mirrors'
endpoints are allowed to have irrational coordinates.
However, the ray tracing problem is PSPACE-hard, if we
restrict ourselves to mirrors with endpoints that are rational
coordinates.

2. For any d > 2, ray tracing of d dimensional optical systems
which consist of a finite set of mirrors surfaces lies in
PSPACE, if the positions of all the surfaces are rational, and
they lie perpendicular to each other. For d > 3, the problem
is PSPACE-complete.

We consider three optical models in this section:

In optical model (1), each optical system consists of a finite set of
quadratic lenses, mirrors, and half-silvered mirrors. A light ray travels



through the system with reflections or refractions. We show that the
problem of deciding if the light ray will reach a given final position in this
system is undecidable. In order to show this, we simulate a universal
Turing machine with this optical model. What is perhaps surprising, is that
our optical system has a fixed number of optical lenses and mirrors, and
yet the ray tracing problem for it simulates any recursive enumerable
computation, where the input is given by the initial position of the light
ray.

In optical model (2), each optical system consists of a finite set of
mirrors and half-silvered mirrors in three dimensional space. We again
show that the problem of deciding is undecidable. To show this, we
simulate a 2-counter machine with this optical model. Next, we consider
the computational complexity when we restrict ourselves to rational optical
systems. In this case, we show that the problem is PSPACE-hard. To
show this, we first define a certain augmented bounded 2-counter machine.
Then, we simulate this augmented bounded 2-counter machine with this
optical system. By showing the augmented bounded 2-counter machine can
compute an arbitrary polynomial space problems, we conclude that the
problem of deciding if the light ray reach a given final position in this
system is in PSPACE-hard. (Although we show that the problem is
PSPACE-hard, we do not even know if this restricted problem is
decidable.)

Optical model (3) is a generalization of optical model (2). In optical
model (3), each optical system occurs in a unit-sized d dimensional
hypercube. The hypercube contains a rational optical system of mirrors.
Each of the mirrors lies perpendicular to every other mirror. We show
that the problem of deciding if the light ray will reach a given final posi-
tion has a non-deterministic polynomial space algorithm, thus showing the
problem is in PSPACE.

Theoretically, these optical vtcms can be viewed as general optical
computing machines, if our contructions can be carried out with infinite
precision, or perfect accuracy. i lowever, these systems may not be
practical, since the above assuniprin may not hold in physical world. The
motivation for this work conic, 'ron an interest in investigating the
problem complexities in ray traciln problems.


